Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771923

RESUMO

Phyllotaxis, the distribution of organs such as leaves and flowers on their support, is a key attribute of plant architecture. The geometric regularity of phyllotaxis has attracted multidisciplinary interest for centuries, resulting in an understanding of the patterns in the model plants Arabidopsis and tomato down to the molecular level. Nevertheless, the iconic example of phyllotaxis, the arrangement of individual florets into spirals in the heads of the daisy family of plants (Asteraceae), has not been fully explained. We integrate experimental data and computational models to explain phyllotaxis in Gerbera hybrida We show that phyllotactic patterning in gerbera is governed by changes in the size of the morphogenetically active zone coordinated with the growth of the head. The dynamics of these changes divides the patterning process into three phases: the development of an approximately circular pattern with a Fibonacci number of primordia near the head rim, its gradual transition to a zigzag pattern, and the development of a spiral pattern that fills the head on the template of this zigzag pattern. Fibonacci spiral numbers arise due to the intercalary insertion and lateral displacement of incipient primordia in the first phase. Our results demonstrate the essential role of the growth and active zone dynamics in the patterning of flower heads.


Assuntos
Asteraceae/fisiologia , Inflorescência/crescimento & desenvolvimento , Organogênese Vegetal , Asteraceae/anatomia & histologia , Genes Reporter , Ácidos Indolacéticos/metabolismo , Inflorescência/anatomia & histologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
2.
Plant Physiol ; 184(3): 1455-1468, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900982

RESUMO

The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3 Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.


Assuntos
Asteraceae/crescimento & desenvolvimento , Asteraceae/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
4.
Nature ; 565(7740): 485-489, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626967

RESUMO

Wood, a type of xylem tissue, originates from cell proliferation of the vascular cambium. Xylem is produced inside, and phloem outside, of the cambium1. Morphogenesis in plants is typically coordinated by organizer cells that direct the adjacent stem cells to undergo programmed cell division and differentiation. The location of the vascular cambium stem cells and whether the organizer concept applies to the cambium are currently unknown2. Here, using lineage-tracing and molecular genetic studies in the roots of Arabidopsis thaliana, we show that cells with a xylem identity direct adjacent vascular cambial cells to divide and function as stem cells. Thus, these xylem-identity cells constitute an organizer. A local maximum of the phytohormone auxin, and consequent expression of CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors, promotes xylem identity and cellular quiescence of the organizer cells. Additionally, the organizer maintains phloem identity in a non-cell-autonomous fashion. Consistent with this dual function of the organizer cells, xylem and phloem originate from a single, bifacial stem cell in each radial cell file, which confirms the classical theory of a uniseriate vascular cambium3. Clones that display high levels of ectopically activated auxin signalling differentiate as xylem vessels; these clones induce cell divisions and the expression of cambial and phloem markers in the adjacent cells, which suggests that a local auxin-signalling maximum is sufficient to specify a stem-cell organizer. Although vascular cambium has a unique function among plant meristems, the stem-cell organizer of this tissue shares features with the organizers of root and shoot meristems.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Câmbio/citologia , Câmbio/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Meristema/citologia , Meristema/metabolismo , Floema/citologia , Floema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Xilema/citologia , Xilema/metabolismo
5.
Front Plant Sci ; 9: 835, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973943

RESUMO

One of the crucial steps in the life cycle of angiosperms is the development of carpels. They are the most complex plant organs, harbor the seeds, and, after fertilization, develop into fruits and are thus an important ecological and economic trait. CRABS CLAW (CRC), a YABBY protein and putative transcription factor, is one of the major carpel developmental regulators in A. thaliana that includes a C2C2 zinc finger and a domain with similarities to an HMG box. CRC is involved in the regulation of processes such as carpel fusion and growth, floral meristem termination, and nectary formation. While its genetic interactions with other carpel development regulators are well described, its biochemical properties and molecular way of action remain unclear. We combined Bimolecular Fluorescence Complementation, Yeast Two-Hybrid, and Yeast One-Hybrid analyzes to shed light on the molecular biology of CRC. Our results showed that CRC dimerizes, also with other YABBY proteins, via the YABBY domain, and that its DNA binding is mainly cooperative and is mediated by the YABBY domain. Further, we identified that CRC is involved in floral meristem termination via transcriptional repression while it acts as a transcriptional activator in nectary development and carpel fusion and growth control. This work increases our understanding on how YABBY transcription factors interact with other proteins and how they regulate their targets.

6.
New Phytol ; 216(3): 939-954, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28742220

RESUMO

The pseudanthial inflorescences of the sunflower family, Asteraceae, mimic a solitary flower but are composed of multiple flowers. Our studies in Gerbera hybrida indicate functional diversification for SEPALLATA (SEP)-like MADS box genes that often function redundantly in other core eudicots. We conducted phylogenetic and expression analysis for eight SEP-like GERBERA REGULATOR OF CAPITULUM DEVELOPMENT (GRCD) genes, including previously unstudied gene family members. Transgenic gerbera plants were used to infer gene functions. Adding to the previously identified stamen and carpel functions for GRCD1 and GRCD2, two partially redundant genes, GRCD4 and GRCD5, were found to be indispensable for petal development. Stepwise conversion of floral organs into leaves in the most severe RNA interference lines suggest redundant and additive GRCD activities in organ identity regulation. We show conserved and redundant functions for several GRCD genes in regulation of flower meristem maintenance, while functional diversification for three SEP1/2/4 clade genes in regulation of inflorescence meristem patterning was observed. GRCD genes show both specialized and pleiotropic functions contributing to organ differentiation and flower meristem fate, and uniquely, to patterning of the inflorescence meristem. Altogether, we provide an example of how plant reproductive evolution has used conserved genetic modules for regulating the elaborate inflorescence architecture in Asteraceae.


Assuntos
Asteraceae/genética , Inflorescência/genética , Proteínas de Plantas/genética , Asteraceae/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Meristema/genética , Família Multigênica , Filogenia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Interferência de RNA
7.
Nat Genet ; 49(6): 904-912, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481341

RESUMO

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Assuntos
Betula/genética , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica/genética , Betula/fisiologia , Finlândia , Duplicação Gênica , Genética Populacional , Filogenia , Densidade Demográfica
8.
Nat Plants ; 2(11): 16167, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27797353

RESUMO

Finding causal relationships between genotypic and phenotypic variation is a key focus of evolutionary biology, human genetics and plant breeding. To identify genome-wide patterns underlying trait diversity, we assembled a high-quality reference genome of Cardamine hirsuta, a close relative of the model plant Arabidopsis thaliana. We combined comparative genome and transcriptome analyses with the experimental tools available in C. hirsuta to investigate gene function and phenotypic diversification. Our findings highlight the prevalent role of transcription factors and tandem gene duplications in morphological evolution. We identified a specific role for the transcriptional regulators PLETHORA5/7 in shaping leaf diversity and link tandem gene duplication with differential gene expression in the explosive seed pod of C. hirsuta. Our work highlights the value of comparative approaches in genetically tractable species to understand the genetic basis for evolutionary change.


Assuntos
Cardamine/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Evolução Biológica , Cardamine/anatomia & histologia , Duplicação Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Physiol ; 172(1): 284-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382139

RESUMO

The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems.


Assuntos
Asteraceae/genética , Flores/genética , Genes de Plantas/genética , Inflorescência/genética , Meristema/genética , Asteraceae/crescimento & desenvolvimento , Asteraceae/ultraestrutura , Evolução Molecular , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Inflorescência/crescimento & desenvolvimento , Inflorescência/ultraestrutura , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Microscopia Eletrônica de Varredura , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
12.
Genes Dev ; 29(22): 2391-404, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26588991

RESUMO

Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Cardamine/crescimento & desenvolvimento , Cardamine/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/genética , Folhas de Planta , Proteínas de Plantas/genética , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
13.
Plant J ; 79(5): 783-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24923429

RESUMO

The complex inflorescences (capitula) of Asteraceae consist of different types of flowers. In Gerbera hybrida (gerbera), the peripheral ray flowers are bilaterally symmetrical and lack functional stamens while the central disc flowers are more radially symmetrical and hermaphroditic. Proteins of the CYC2 subclade of the CYC/TB1-like TCP domain transcription factors have been recruited several times independently for parallel evolution of bilaterally symmetrical flowers in various angiosperm plant lineages, and have also been shown to regulate flower-type identity in Asteraceae. The CYC2 subclade genes in gerbera show largely overlapping gene expression patterns. At the level of single flowers, their expression domain in petals shows a spatial shift from the dorsal pattern known so far in species with bilaterally symmetrical flowers, suggesting that this change in expression may have evolved after the origin of Asteraceae. Functional analysis indicates that GhCYC2, GhCYC3 and GhCYC4 mediate positional information at the proximal-distal axis of the inflorescence, leading to differentiation of ray flowers, but that they also regulate ray flower petal growth by affecting cell proliferation until the final size and shape of the petals is reached. Moreover, our data show functional diversification for the GhCYC5 gene. Ectopic activation of GhCYC5 increases flower density in the inflorescence, suggesting that GhCYC5 may promote the flower initiation rate during expansion of the capitulum. Our data thus indicate that modification of the ancestral network of TCP factors has, through gene duplications, led to the establishment of new expression domains and to functional diversification.


Assuntos
Asteraceae/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Asteraceae/anatomia & histologia , Asteraceae/crescimento & desenvolvimento , DNA de Plantas/química , DNA de Plantas/genética , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Família Multigênica , Filogenia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Transgenes , Regulação para Cima
14.
BMC Plant Biol ; 10: 128, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20579337

RESUMO

BACKGROUND: The flowering process in plants proceeds through the induction of an inflorescence meristem triggered by several pathways. Many of the genes associated with both the flowering process and floral architecture encode transcription factors of the MADS domain family. Gerbera, a member of the sunflower family, Asteraceae, bears compressed inflorescence heads (capitula) with three different flower types characterized by differences in both sexuality and floral symmetry. To understand how such a complex inflorescence structure is achieved at the molecular level, we have characterized the array of Gerbera MADS box genes. The high number of SQUAMOSA-like genes in Gerbera compared to other model species raised the question as to whether they may relate to Gerbera's complex inflorescence structure and whether or not a homeotic A function is present. RESULTS: In this paper we describe six Gerbera genes related to the SQUAMOSA/APETALA1/FRUITFULL genes of snapdragon and Arabidopsis. Based on phylogenetic analysis of the entire gene lineage, our data indicates that GSQUA1 and GSQUA3 are members of the SQUA/AP1 clade, while GSQUA2, GSQUA4, GSQUA5 and GSQUA6 are co-orthologs of the Arabidopsis FUL gene. GSQUA1/GSQUA3 and GSQUA4/GSQUA5/GSQUA6, respectively, represent several gene duplication events unknown in the model systems that may be specific to either Gerbera or Asteraceae. GSQUA genes showed specific expression profiles. GSQUA1, GSQUA2, and GSQUA5 were inflorescence abundant, while GSQUA3, GSQUA4, and GSQUA6 expression was also detected in vegetative organs. Overexpression of GSQUA2 in Gerbera led to accelerated flowering, dwarfism and vegetative abnormalities, all new and specific phenomena observed in transgenic Gerbera plants with modified MADS box gene expression. CONCLUSIONS: Based on expression patterns, none of the Gerbera SQUA-like genes are likely to control flower organ identity in the sense of the floral A function. However, our data shows that the FUL-like gene GSQUA2 plays a vital role in meristem transition. The roles of other GSQUA-genes in Gerbera floral development are intriguing, but require still further study.


Assuntos
Asteraceae , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Sequência de Aminoácidos , Asteraceae/genética , Asteraceae/crescimento & desenvolvimento , Asteraceae/metabolismo , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/química , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Fenótipo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reprodução/genética , Alinhamento de Sequência
15.
J Exp Bot ; 61(1): 75-85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19767305

RESUMO

According to the classical ABC model, B-function genes are involved in determining petal and stamen development. Most core eudicot species have B class genes belonging to three different lineages: the PI, euAP3, and TM6 lineages, although both Arabidopsis and Antirrhinum appear to have lost their TM6-like gene. Functional studies were performed for three gerbera (Gerbera hybrida) B class MADS-box genes--PI/GLO-like GGLO1, euAP3 class GDEF2, and TM6-like GDEF1--and data are shown for a second euAP3-like gene, GDEF3. In phylogenetic analysis, GDEF3 is a closely related paralogue of GDEF2, and apparently stems from a duplication common to all Asteraceae. Expression analysis and transgenic phenotypes confirm that GGLO1 and GDEF2 mediate the classical B-function since they determine petal and stamen identities. However, based on assays in yeast, three B class heterodimer combinations are possible in gerbera. In addition to the interaction of GGLO1 and GDEF2 proteins, GGLO1 also pairs with GDEF1 and GDEF3. This analysis of GDEF1 represents the first functional characterization of a TM6-like gene in a core eudicot species outside Solanaceae. Similarly to its relatives in petunia and tomato, the expression pattern and transgenic phenotypes indicate that GDEF1 is not involved in determination of petal identity, but has a redundant role in regulating stamen development.


Assuntos
Asteraceae/metabolismo , Proteínas de Domínio MADS/metabolismo , Asteraceae/genética , Regulação para Baixo/genética , Flores/genética , Flores/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Especificidade de Órgãos , Fenótipo , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Plantas Geneticamente Modificadas , Ligação Proteica
16.
J Exp Bot ; 59(13): 3691-703, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18725377

RESUMO

Genetic modification of the flavonoid pathway has been used to produce novel colours and colour patterns in ornamental plants as well as to modify the nutritional and pharmaceutical properties of food crops. It has been suggested that co-ordinate control of multiple steps of the pathway with the help of regulatory genes would lead to a more predictable control of metabolic flux. Regulation of anthocyanin biosynthesis has been studied in a common ornamental plant, Gerbera hybrida (Asteraceae). An R2R3-type MYB factor, GMYB10, shares high sequence similarity and is phylogenetically grouped together with previously characterized regulators of anthocyanin pigmentation. Ectopic expression of GMYB10 leads to strongly enhanced accumulation of anthocyanin pigments as well as to an altered pigmentation pattern in transgenic gerbera plants. Anthocyanin analysis indicates that GMYB10 specifically induces cyanidin biosynthesis in undifferentiated callus and in vegetative tissues. Furthermore, in floral tissues enhanced pelargonidin production is detected. Microarray analysis using the gerbera 9K cDNA array revealed a highly predicted set of putative target genes for GMYB10 including new gene family members of both early and late biosynthetic genes of the flavonoid pathway. However, completely new candidate targets, such as a serine carboxypeptidase-like gene as well, as two new MYB domain factors, GMYB11 and GMYB12, whose exact function in phenylpropanoid biosynthesis is not clear yet, were also identified.


Assuntos
Antocianinas/biossíntese , Asteraceae/genética , Asteraceae/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reguladores , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Flores/genética , Flores/metabolismo , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética
17.
Proc Natl Acad Sci U S A ; 105(26): 9117-22, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18574149

RESUMO

Several key processes in plant development are regulated by TCP transcription factors. CYCLOIDEA-like (CYC-like) TCP domain proteins have been shown to control flower symmetry in distantly related plant lineages. Gerbera hybrida, a member of one of the largest clades of angiosperms, the sunflower family (Asteraceae), is an interesting model for developmental studies because its elaborate inflorescence comprises different types of flowers that have specialized structures and functions. The morphological differentiation of flower types involves gradual changes in flower size and symmetry that follow the radial organization of the densely packed inflorescence. Differences in the degree of petal fusion further define the distinct shapes of the Gerbera flower types. To study the role of TCP transcription factors during specification of this complex inflorescence organization, we characterized the CYC-like homolog GhCYC2 from Gerbera. The expression of GhCYC2 follows a gradient along the radial axis of the inflorescence. GhCYC2 is expressed in the marginal, bilaterally symmetrical ray flowers but not in the centermost disk flowers, which are nearly radially symmetrical and have significantly less fused petals. Overexpression of GhCYC2 causes disk flowers to obtain morphologies similar to ray flowers. Both expression patterns and transgenic phenotypes suggest that GhCYC2 is involved in differentiation among Gerbera flower types, providing the first molecular evidence that CYC-like TCP factors take part in defining the complex inflorescence structure of the Asteraceae, a major determinant of the family's evolutionary success.


Assuntos
Asteraceae/embriologia , Padronização Corporal , Flores/embriologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Asteraceae/citologia , Asteraceae/genética , Asteraceae/ultraestrutura , Proteínas de Ligação a DNA , Flores/citologia , Flores/genética , Flores/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
18.
BMC Plant Biol ; 6: 11, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16762082

RESUMO

BACKGROUND: The inflorescence of the cut-flower crop Gerbera hybrida (Asteraceae) consists of two principal flower types, ray and disc, which form a tightly packed head, or capitulum. Despite great interest in plant morphological evolution and the tractability of the gerbera system, very little is known regarding genetic mechanisms involved in flower type specification. Here, we provide comparative staging of ray and disc flower development and microarray screening for differentially expressed genes, accomplished via microdissection of hundreds of coordinately developing flower primordia. RESULTS: Using a 9K gerbera cDNA microarray we identified a number of genes with putative specificity to individual flower types. Intrestingly, several of these encode homologs of MADS-box transcription factors otherwise known to regulate flower organ development. From these and previously obtained data, we hypothesize the functions and protein-protein interactions of several gerbera MADS-box factors. CONCLUSION: Our RNA expression results suggest that flower-type specific MADS protein complexes may play a central role in differential development of ray and disc flowers across the gerbera capitulum, and that some commonality is shared with known protein functions in floral organ determination. These findings support the intriguing conjecture that the gerbera flowering head is more than a mere floral analog at the level of gene regulation.


Assuntos
Asteraceae/crescimento & desenvolvimento , Asteraceae/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Asteraceae/classificação , Flores/citologia , Flores/genética , Flores/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise em Microsséries , Modelos Biológicos , Dados de Sequência Molecular , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...